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Supplementary Material

The Supplementary Material reports the assumptions needed to prove the asymptotic normality
of the MDPDE estimator in Section SM–1. The simplification of the sensitivity measures in case
of balanced data are shown in Section SM–2 while the equivariance properties of the estimator
in Section SM–3. Section SM–4 shows an illustrative example about the robustness achieved
by the predictions of random effects using the proposed estimator, while Section SM–5 reports
the missing plots about theoretical quantities. Further results obtained from the Monte Carlo
experiments are presented in Section SM–6, whereas Section SM–7 contains complete results
from the study of the real-data example on orthodontic measures. Finally, Section SM–8 reports
the analysis of the real life data on foveal and extrafoveal vision acuity (and crowding) studying
their interrelationships with one’s reading performances.

SM–1 Asymptotic properties

Continuing with the notation and set-up of Section 2, let Fi,θ be the parametric model. Assume
that there exists a best fitting parameter of θ which is independent of the index i of the different
densities and let us denote it by θg. We also assume that all the true densities gi belong to the
model family, i.e. gi = fi(·;θ) for some common θ, and in that case the best fitting parameter

is nothing but the true parameter θ. We define, for each i = 1, . . . , n, the p× p matrix J (i) as

J (i) = (1 + α)

[∫
ui(y;θ

g)u⊤
i (y;θ

g)f1+α
i (y;θg)dy

−
∫
{∇ui(y;θ

g) + αui(y;θ
g)u⊤

i (y;θ
g)}{gi(y)− fi(y;θ

g)}fi(y;θg)αdy

]
.

We further define the quantities Ψn = 1
n

∑n
i=1 J

(i), and

Ωn = (1 + α)2
1

n

n∑
i=1

[∫
ui(y;θ

g)u⊤
i (y;θ

g)fi(y;θ
g)2αgi(y)dy − ξiξ

⊤
i

]
,
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where ξi =
∫
ui(y;θ

g)fi(y;θ
g)αgi(y)dy.

We will make the following assumptions to establish the asymptotic properties of the MDPDE
under this general set-up of independent but non-homogeneous observations Ghosh and Basu
[2013].

(A1) The support χ = {y|fi(y;θ) > 0} is independent of i and θ for all i; the true distributions
Gi are also supported for all i.

(A2) There is an open subset ω of the parameter space Θ, containing the best fitting parameter
θg such that for almost all y ∈ χ, and all θ ∈ Θ, all i = 1, . . . , n, the density fi(y;θ) is
thrice differentiable with respect to θ and the third partial derivatives are continuous with
respect to θ.

(A3) For i = 1, . . . , n, the integrals
∫
fi(y;θ)

1+αdy and
∫
fi(y;θ)

αgi(y)dy can be differentiated
thrice with respect to θ, and the derivatives can be taken under the integral sign.

(A4) For each i = 1, . . . , n, the matrices J (i) are positive definite and

λ0 = inf
n
[min eigenvalue of Ψn] > 0

(A5) There exists a function M
(i)
jkl(y) such that

|∇jklHi(y,θ)| ≤ M
(i)
jkl(y) ∀θ ∈ Θ, ∀i

where
1

n

n∑
i=1

Egi [M
(i)
jkl(Y )] = O(1) ∀j, k, l

(A6) For all j, k, we have

lim
N→∞

sup
n>1

{
1

n

n∑
i=1

Egi [|∇jHi(Y ,θ)|I(|∇jHi(Y ,θ)| > N)]

}
= 0 (1)

lim
N→∞

sup
n>1

{
1

n

n∑
i=1

Egi [|∇jkHi(Y ,θ)− Egi(∇jkHi(Y ,θ))|

× I(|∇jkHi(Y ,θ)− Egi(∇jkHi(Y ,θ))| > N)]

}
= 0 (2)

where I(B) denotes the indicator variable of the event B.

(A7) For all ϵ > 0, we have

lim
n→∞

{
1

n

n∑
i=1

Egi

[
∥Ω−1/2

n ∇Hi(Y ,θ)∥2I(∥Ω−1/2
n ∇Hi(Y ,θ)∥ > ϵ

√
n)

]}
= 0. (3)

Ghosh and Basu [2013] proved that, under assumptions (A1)-(A7), the MDPDE θ̂ is consis-

tent for θ and asymptotically normal. In particular, the asymptotic distribution ofΩ−1/2
n Ψn[

√
n(θn−

θg)] is p-dimensional normal with (vector) mean 0 and covariance matrix Ip, the p-dimensional
identity matrix.
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SM–2 Sensitivity measures

Gross Error Sensitivity

Considering the influence function of the functional Tβ
α , we have that

γu
i0(T

β
α , G1, . . . , Gn) = sup

t

{∥∥∥(X ′⊤X ′)−1X⊤
i0V

−1
i0

(ti0 −Xi0β)fi0(ti0 ;θ)
α
∥∥∥}

=
supZ

{∥∥∥(X ′⊤X ′)−1X⊤
i0V

−1/2
i0

Z
∥∥∥ e−Z⊤Z

2

}
√
α(2π)

niα

2 |V i0 |
α
2

,

where Z =
√
αV

−1/2
i0

(t−Xi0β). Denoting A = (X ′⊤X ′)−1X⊤
i0V

−1/2
i0

, we have to find the sup

of the function ∥AZ∥ eZ⊤Z
2 with respect to Z. Then, we compute the derivative with respect to

Z obtaining

∂((Z⊤A⊤AZ)1/2e−
Z⊤Z

2 )

∂Z
=

A⊤AZe−
Z⊤Z

2

(Z⊤A⊤AZ)1/2
− (Z⊤A⊤AZ)1/2e−

Z⊤Z
2 Z = 0.

Finally, multiplying the above equation by Z⊤ we have

(Z⊤A⊤AZ)1/2e−
Z⊤Z

2 − (Z⊤A⊤AZ)1/2e−
Z⊤Z

2 Z⊤Z = 0

(Z⊤A⊤AZ)1/2e−
Z⊤Z

2

[
1−Z⊤Z

]
= 0.

A solution is given by Z such that Z⊤Z = 1, that is Z = k
∥k∥ with k ∈ Rni0 . Hence

sup
Z

{
∥AZ∥ e−Z⊤Z

2

}
=e−1/2 sup

k

{
∥Ak∥
∥k∥

}

=e−1/2 sup
k

{
k⊤A⊤Ak

k⊤k

} 1
2

.

We know that supz

{
z⊤Az
z⊤z

}
= λmax(A), where λmax(A) is the maximum eigenvalue of the

matrix A. Using this general results in our case , we obtain

γu
i0(T

β
α , G1, . . . , Gn) =

(λmax((X
′⊤X ′)−2X⊤

i0V
−1
i0

Xi0))
1
2

√
e
√
α(2π)

niα

2 |V i0 |
α
2

Special Case: When ni = p, for all i = 1, . . . , n, the matrix X ′⊤X ′ can be rewritten as

X ′⊤X ′ =

n∑
i=1

X⊤
i V

−1Xi

(1 + α)
p
2+1(2π)

pα
2 |V |α2

=
1

(1 + α)
p
2+1(2π)

pα
2 |V |α2

n∑
i=1

X⊤
i V

−1Xi

Substituting this simpler form in the formula of the gross error sensitivity we get Equation (24).
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Self-Standardized Sensitivity

Starting from the definition of the self-standardized sensitivity, we have that

γs
i0(T

β
α , G1, . . . , Gn) =

1

n
sup
t

{
(t−Xi0β)

⊤V −1
i0

Xi0(X
∗⊤X∗)−1X⊤

i0V
−1
i0

(t−Xi0β)f
2α
i (t,θ)

} 1
2

.

Let Z =
(

V i0

2α

)−1/2

(t−Xi0β), then the above equation has the the form

γs
i0(T

β
α , G1, . . . , Gn) =

1

n
√
2α(2π)

niα

2 |V i0 |
α
2

sup
Z

{
Z⊤V

−1/2
i0

Xi0(X
∗⊤X∗)−1X⊤

i0V
−1/2
i0

Ze−
Z⊤Z

2

} 1
2

=
1

n
√
2α(2π)

niα

2 |V i0 |
α
2

sup
Z

{
Z⊤AZe−

Z⊤Z
2

} 1
2

,

where A = V
−1/2
i0

Xi0(X
∗⊤X∗)−1X⊤

i0V
−1/2
i0

. In order to find this sup, we compute the deriva-
tive with respect to Z, obtaining

∂(Z⊤AZe−
Z⊤Z

2 )

∂Z
=Z⊤

[
2AZe−

Z⊤Z
2 −Z⊤AZe−

Z⊤Z
2 Z

]
=Z⊤AZe−

Z⊤Z
2 [2−Z⊤Z] = 0.

A solution is given by Z such that Z⊤Z = 2, then Z =
√
2k

∥k∥ , with k ∈ Rni0 . Note that we

multiplied by Z⊤ in the same way done for the gross error sensitivity. Hence

γs
i0(T

β
α , G1, . . . , Gn) =

√
2

n
√
2α(2π)

niα

2 |V i0 |
α
2

sup
k

{
k⊤Ak

∥k∥2

} 1
2

=

[
λmax

(
(X∗⊤X∗)−1X⊤

i0V
−1
i0

Xi0

)]1/2
n
√
α(2π)

niα

2 |V i|
α
2 e1/2

,

which corresponds to equation (22).

Special Case: When ni = p, for all i = 1, . . . , n, the matrix X∗⊤X∗ can be rewritten as

X∗⊤X∗ =
n∑

i=1

X⊤
i V

−1Xi

(1 + α)
p
2+1(2π)pα|V |α

=
1

(1 + α)
p
2+1(2π)pα|V |α

n∑
i=1

X⊤
i V

−1Xi

Substituting this simpler form in the formula of the self-standardized sensitivity we get equation
(25).

SM–3 Equivariance

Here we show the equivariance properties of the MDPDE. Recall that, the estimator θ̂ =
(β̂, σj , j = 0, . . . , r) is as defined in equation (7) and yi is a ni-variate random vector such
that yi ∼ Nni

(xiβ,V i) where xi is a ni × k model matrix. Note that, the case α = 0 corre-
sponds to the MLE which satisfies the equivariance properties. Then we show that the same
hold for α > 0.
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Regression equivariance

Let
◦
yi= yi + xiδ for some vector δ. Then

◦
yi∼ Nni

(xi(β− δ),V i). An estimate β̂(x,y) for the

fixed terms is regression equivariant if
◦
β= β̂(x,

◦
y) = β̂(x,y) + δ.

We have that

β̂(xi,
◦
yi) = argmin

β

1

n

n∑
i=1

[
ηiα(α+ 1)−

ni
2 −

(
1 +

1

α

)
wi((β − δ),V i)

]

=arg min
(β−δ)

1

n

n∑
i=1

[
ηiα(α+ 1)−

ni
2 −

(
1 +

1

α

)
wi((β − δ),V i)

]
+ δ

=β̂(xi,yi) + δ.

This shows that β̂ is regression equivariant. Finally, note that the estimates of the variance

components remains unchanged, hence σ̂2
0 and γ̂j are regression invariant, i.e.

◦
σ2
0= σ̂2

0 and
◦
γj= γ̂j .

Affine equivariance

Let A be a non-singular square matrix and
◦
xi= xiA. An estimate is affine equivariant if

◦
β= β̂(

◦
x,y) = A−1β̂(x,y).

Considering the estimate for β, we have that

β̂(
◦
xi,yi) = argmin

β

1

n

n∑
i=1

[
ηiα(α+ 1)−

ni
2 −

(
1 +

1

α

)
wi(Aβ,V i)

]

=A−1 argmin
Aβ

1

n

n∑
i=1

[
ηiα(α+ 1)−

ni
2 −

(
1 +

1

α

)
wi(Aβ,V i)

]
=A−1β̂(xi,yi) + δ.

This proves that the estimate β̂ is affine equivariant. As before, the estimation of the variance

components parameters is not affected, hence σ̂2
0 and γ̂j are affine invariant, i.e.

◦
σ2
0= σ̂2

0 and
◦
γj= γ̂j .

Scale equivariance

Let
◦
yi= δyi for some scalar δ. Then

◦
yi∼ Nni

(xi(δβ),
◦
V i) with

◦
V i=

◦
σ
2

0 (Ini
+

∑r
j=1 ZijZ

⊤
ijγj)

where
◦
σ
2

0= δ2σ2
0 .

Note that
◦
V i= δ2V i, then

◦
ηiα= |δ|−αηiα and

◦
wi=

◦
ηiα exp

{
−α

2
(δyi − xiβδ)

⊤ ◦
V

−1

i (δyi − xiβδ)

}
=|δ|−αηiα exp

{
−α

2
(yi − xiβ)

⊤V −1
i (yi − xiβ)

}
=|δ|−αwi.
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Then

θ̂(xi,
◦
yi) = argmin

θ

1

n

n∑
i=1

|δ|−α

[
ηiα(α+ 1)−

ni
2 −

(
1 +

1

α

)
wi

]

Hence the estimates β̂ and γ̂j are scale invariant, i.e.
◦
β= β̂ and

◦
γj= γ̂j , while

◦
σ2
0= δ2σ̂2

0 .

SM–4 Example: robustness of predicted random effects

Here, we present an illustrative example to show the robustness achieved by the predicted random
effects ui, i = 1, . . . , n for each observation.

Consider the model setting

yfgh = x⊤
fghβ0 + af + bg + cfg + efgh,

used in the simulation study introduced in Section 5 of the manuscript. We also consider the
complete contamination scenario with ε = 15%, ϕ0 = 1 and ω0 = 3. At first, we compute the
estimates of fixed effects parameters and variances through the proposed robust MDPDE with
α = 1

6 and by the MLE. Then, the predictions of random effects are derived for the MDPDE
using the formula given in equation 23, while for MLE the standard formulation is used.

Table 1: True values and estimates of fixed effects parameters and variances for the MDPDE
with α = 1/6 and MLE under 15% of outlier contamination.

Method β σa σb σc σe

true 0 2 2 2 2 2 0.06 0.06 0.12 0.25
MLE 0.52 2.04 2.01 2.02 2.02 1.99 0.60 0.43 1.96 0.53

MDPDE 0.10 2.01 1.98 1.97 2.00 1.97 0.07 0.06 0.08 0.28

Table 1 reports the obtained estimates. The variance components estimated by the MLE
are highly affected by the contamination in comparison with the MDPDE. On the other hand,
the fixed effect estimates are quite similar, except for the intercept β0 = 0. Figures 1, 2 and 3
show the QQ-plots of predictions of random terms a, b and c, respectively, for the MLE and
the MDPDE with α = 1/6. Values corresponding to outlying observations are displayed as red
triangles while the rest of observations as black circles.

These Figures show that the predictions obtained using the robust formulation given in
equation 23 clearly identify the outlying observations, due to the use of robust estimates given
by the MDPDE. On the other hand, the MLE predictions tend to hide the outliers.

SM–5 Additional Numerical Results

In this section we provide the plots of Asymptotic Relative Efficiency and Influence functions,
corresponding to the Example in Section 4.4.

Figure 4 shows the Asymptotic Relative Efficiency with respect to α for β0, σ2
0 and σ2

1 ,

respectively. In Figure 5 we can see the influence function for the estimators T β1
α , T

σ2
0

α and T
σ2
2

α

for α = 0, 0.05. While Figure 6 presents the same quantities for α = α∗ = 1
11 and α = ᾱ = 0.2.
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(a) MLE
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(b) MDPDE

Figure 1: QQ-plots of the random term a predicted by the MLE (top) and the MDPD-estimator
(bottom) for α = ᾱ = 1/6. Values corresponding to outlying observations are displayed as red
triangles while the rest of observations as black circles.
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(a) MLE
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(b) MDPDE

Figure 2: QQ-plots of the random term b predicted by the MLE (top) and the MDPD-estimator
(bottom) for α = ᾱ = 1/6. Values corresponding to outlying observations are displayed as red
triangles while the rest of observations as black circles.
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(a) MLE
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(b) MDPDE

Figure 3: QQ-plots of the random term c predicted by the MLE (top) and the MDPD-estimator
(bottom) for α = ᾱ = 1/6. Values corresponding to outlying observations are displayed as red
triangles while the rest of observations as black circles.
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Figure 4: Asymptotic Relative Efficiency with respect to α for β0, σ
2
0 and σ2

1 , respectively.

SM–6 Additional Results from Monte Carlo experiment

Here, we report the complete results of the Monte Carlo experiments with respect to the con-
tamination levels considered.

The MSMD andMKLD performances of the CVFS-, SMDM-estimators, Composite τ -estimators
and for MDPDE for different values of α with 5% of contamination are presented in Figure 7a and
7b, respectively, for the complete contamination. The corresponding results for the separated
contamination scenarios are displayed in Figure 8a and 8b

Figure 9a and 9b display the MSMD and MKLD performances of the CVFS-, SMDM-
estimators, Composite τ -estimators and for MDPDE for different values of α with 10% of contam-
ination for the complete contamination, while the separated contamination are given in Figure
10a and 10b.

Finally, the MSMD and MKLD performances for the complete contamination of the CVFS-,
SMDM-, Composite τ -estimators and for MDPDE for different values of the parameter α in case
of 15% are shown in Figures 11a and 11b, whereas Figures 12a and 12b report the results in case
of separated contamination.

Tables 2 and 4 report the maximum values of MSMD and MKLD of the CVFS-, SMDM-,
Composite τ -estimators and for MDPDE considering different values of α in case of complete
contamination and separated contamination, respectively, for 5% of contamination percentage.
The results for 15% of contamination are reported in Tables 3 and 5.
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Figure 5: Influence function for the estimators T β1
α , T

σ2
0

α and T
σ2
2

α with respect to α = 0 (on the
left) and α = 0.05 (on the right).
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Figure 6: Influence function for the estimators T β1
α , T

σ2
0

α and T
σ2
2

α with respect to α = ᾱ(0.2) (on
the left) and α = α∗(1/11) (on the right).
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(b) MKLD performance of the MDPD-estimators of (η,γ)

Figure 7: Complete contamination. Performance of the MDPD-estimators of β and (η,γ) consid-
ering different values of α (including α∗ = 1/13 and ᾱ = 1/6) compared to the CVFS-, SMDM-
and Composite τ -estimators, under 5% outlier contamination.

Table 2: Complete contamination. Maximum values of MSMD and MKLD for the CVFS-,
SMDM-, Composite τ -estimators and for MDPDE considering different values of α under 5% of
outlier contamination.

MSMD MKLD
Method (α) lev1 lev20 lev1 lev20
CVFS - 0.005 0.045 0.132 0.322
SMDM - 0.007 0.444 0.843 9.347

Composite τ - 0.009 0.051 0.104 0.228
MDPDE 0 2.255 2.255 2.276e22 8.198e25

0.01 0.165 0.063 33.537 0.241
α∗( 1

13 ) 0.005 0.045 0.146 0.172
0.1 0.004 0.044 0.107 0.173

ᾱ( 16 ) 0.004 0.045 0.066 0.177
0.2 0.004 0.045 0.067 0.179
0.3 0.005 0.044 0.077 0.184
0.4 0.005 0.043 0.095 0.192
0.5 0.007 0.042 0.121 0.209
0.6 0.009 0.042 0.157 0.230
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(a) MSMD performance of the MDPD-estimators of β
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(b) MKLD performance of the MDPD-estimators of (η,γ)

Figure 8: Contamination on x and y. Performance of the MDPD-estimators of β and (η,γ)
considering different values of α (including α∗ = 1/13 and ᾱ = 1/6) compared to the CVFS-,
SMDM- and Composite τ -estimators, under 5% outlier contamination.
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(a) MSMD performance of the MDPD-estimators of β
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(b) MKLD performance of the MDPD-estimators of (η,γ)

Figure 9: Complete contamination. Performance of the MDPD-estimators of β and (η,γ) consid-
ering different values of α (including α∗ = 1/13 and ᾱ = 1/6) compared to the CVFS-, SMDM-
and Composite τ -estimators, under 10% outlier contamination.

Table 3: Complete contamination. Maximum values of MSMD and MKLD for the CVFS-,
SMDM-, Composite τ -estimators and for MDPDE considering different values of α under 15%
of outlier contamination.

MSMD MKLD
Method (α) lev1 lev20 lev1 lev20
CVFS - 0.019 0.240 0.306 2.549
SMDM - 1.174 0.452 225.429 8.162

Composite τ - 0.100 0.268 1.182 2.288
MDPDE 0 20.260 20.275 1.439e23 1.606e22

0.01 2.892 0.239 164.868 2.002
α∗( 1

13 ) 0.240 0.240 3.878 1.891
0.1 0.036 0.240 1.516 1.852

ᾱ( 16 ) 0.241 0.241 0.405 1.741
0.2 0.016 0.242 0.232 1.689
0.3 0.013 0.244 0.155 1.556
0.4 0.012 0.246 0.159 1.452
0.5 0.013 0.249 0.174 1.372
0.6 0.014 0.255 0.203 1.308
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(a) MSMD performance of the MDPD-estimators of β
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(b) MKLD performance of the MDPD-estimators of (η,γ)

Figure 10: Contamination on x and y. Performance of the MDPD-estimators of β and (η,γ)
considering different values of α (including α∗ = 1/13 and ᾱ = 1/6) compared to the CVFS-,
SMDM- and Composite τ -estimators, under 10% outlier contamination.
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(a) MSMD performance of the MDPD-estimators of β
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(b) MKLD performance of the MDPD-estimators of (η,γ)

Figure 11: Complete contamination. Performance of the MDPD-estimators of β and (η,γ)
considering different values of α (including α∗ = 1/13 and ᾱ = 1/6) compared to the CVFS-,
SMDM- and Composite τ -estimators, under 15% outlier contamination.

Table 4: Contamination on x and y separately. Maximum values of MSMD and MKLD for
the CVFS-, SMDM-, Composite τ -estimators and for MDPDE considering different values of α
under 5% of outlier contamination.

MSMD MKLD
Method (α) x y x y
CVFS - 0.003 0.004 0.093 0.141
SMDM - 0.003 0.007 0.820 0.800

Composite τ - 0.003 0.005 0.042 0.104
MDPDE 0 0.003 2.250 1.012 103.539

0.01 0.003 0.165 0.035 33.547
α∗( 1

13 ) 0.003 0.005 0.036 0.147
0.1 0.003 0.004 0.037 0.108

ᾱ( 16 ) 0.003 0.004 0.042 0.064
0.2 0.003 0.004 0.046 0.064
0.3 0.004 0.005 0.060 0.074
0.4 0.005 0.005 0.081 0.092
0.5 0.007 0.007 0.108 0.119
0.6 0.009 0.008 0.146 0.158
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(a) MSMD performance of the MDPD-estimators of β
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(b) MKLD performance of the MDPD-estimators of (η,γ)

Figure 12: Contamination on x and y. Performance of the MDPD-estimators of β and (η,γ)
considering different values of α (including α∗ = 1/13 and ᾱ = 1/6) compared to the CVFS-,
SMDM- and Composite τ -estimators, under 15% outlier contamination.
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Table 5: Contamination on x and y separately. Maximum values of MSMD and MKLD for
the CVFS-, SMDM-, Composite τ -estimators and for MDPDE considering different values of α
under 15% of outlier contamination.

MSMD MKLD
Method (α) x y x y
CVFS - 0.004 0.018 0.093 0.330
SMDM - 0.003 1.176 0.816 224.819

Composite τ - 0.004 0.020 0.042 1.155
MDPDE 0 0.003 20.246 1.012 291.512

0.01 0.003 2.923 0.035 169.689
α∗( 1

13 ) 0.003 0.072 0.036 4.036
0.1 0.003 0.034 0.037 1.332

ᾱ( 16 ) 0.003 0.015 0.042 0.385
0.2 0.004 0.014 0.046 0.208
0.3 0.004 0.011 0.060 0.174
0.4 0.005 0.010 0.081 0.174
0.5 0.007 0.010 0.108 0.190
0.6 0.009 0.011 0.146 0.225

SM–7 Results from real-data example: Orthodontic dis-
tance growth

In this Section, we report some additional results from the study of the real-data example about
orthodontic measures presented in Section 6.

Figure 13a and 13b show the QQ-plot for the predictions of the random intercept and random
slope (age), respectively, computed by the MLE, the SMDM-estimator, the CVFS-estimator, the
Composite τ -estimator and the MDPDE for α = α∗ = 0.2 and α = ᾱ = 0.5.

SM–8 Real-data example: Extrafoveal Vision Acuity

We compare the estimates obtained by the minimum DPD method with those obtained using
the classical (non-robust) restricted MLE, computed using the lmer function in R, as well as the
robust competitors, the SMDM-estimator and the CVFS-estimator. A very important consid-
eration in real situations is the selection of an “optimum” value of α that applies to the given
data set. We will use different values of α to highlight the behavior of the estimator seen in the
simulations. In general, we are going to consider the values α∗ and ᾱ, derived from theoretical
computations, as suggested optimal values.

We consider the study conducted by Frömer et al. [2015] about the relationship between
individual differences in foveal visual acuity and extrafoveal vision (acuity and crowding) and
reading time measures, such as reading rate and preview benefit.

There were 40 participants in the study, with normal visual acuity measured with the adaptive
computerized Freiburg Acuity Test (FrACT) Bach [1996]. The study was organized in two
test sessions. During the first session, the extrafoveal vision assessment (EVA) was provided,
involving a test of crowded and uncrowded extrafoveal vision. In addition, visual acuity of fovea
was measured using the FrACT. The second session was taken after a week, consisting of an eye-
tracking experiment with list reading followed by the EVA procedure. The EVA was performed
considering four test conditions: identification of single letters and flanked letters in the left
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(a) Intercept

(b) Age

Figure 13: QQ-plots of the random terms estimated by the MLE, CVFS-, SMDM-, Composite
τ -estimators and the MDPD-estimators forα = α∗ = 0.2 and α = ᾱ = 0.5.
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and right visual field. Here, we consider only data coming from measurements with the EVA
procedure and do not deal with data related to the reading task.

This kind of data can be modeled using a Linear Mixed Model. In particular, we studied
a repeated measures Analysis of Variance (ANOVA) of the threshold eccentricities (TE) with
random effects given by extrafoveal vision (EV)(single versus crowded letter), hemifield (H)(left,
right), and test repetition (T1, T2, T3). Thus, combining the factors given above, we have p = 12
measurements for each subject (participant). The model for each subject (i-th) has the form

TEi =β0 + β1EVi + β2Hi + β3T2 1i + β4T3 2i + β5(EV ∗H)i + β6(EV ∗ T2 1)i+

β7(EV ∗ T3 3)i + β8(H ∗ T2 1)i + β9(H ∗ T3 2)i + β10(EV ∗H ∗ T2 1)i+

β11(EV ∗H ∗ T3 2)i + u1 + EV u2 +Hu3 + T2 1u4 + T3 2u5 + (EV ∗H)u6+

(EV ∗ T2 1)u7 + (EV ∗ T3 3)u8 + (H ∗ T2 1)u9 + (H ∗ T3 2)u10 + ϵi

where i ∈ {1, . . . , n}, n = 40, while T2 1 and T3 2 substitute the factor time (T1, T2, T3) indicat-
ing the transitions between the first and second sessions, and between third and second sessions,
respectively. Hence, we have 12 fixed effect parameters (β0, . . . , β11), and 10 random effects of
which we will estimate the variance components σ2

j , j ∈ {1, . . . , 10}.

Table 6: Estimates of model parameters obtained using different estimators.

Method lmer SMDM CVFS MDPDE
(α) - - - 0.05 1/13 1/6 0.2 0.4 0.6

β
Intercept 7.007 7.034 7.041 7.040 7.060 7.123 7.151 7.196 7.197

EV 7.791 7.826 7.884 7.828 7.834 7.798 7.766 7.643 7.722
H -0.021 -0.009 -0.001 0.000 0.002 -0.007 -0.010 -0.048 -0.030

T2 1 0.062 0.024 -0.016 0.002 -0.019 -0.068 -0.090 -0.165 -0.018
T3 2 -0.081 -0.066 -0.033 -0.040 -0.030 -0.015 -0.009 0.043 0.189

EV*H 0.439 0.454 0.495 0.459 0.449 0.372 0.333 0.205 -0.012
EV*T2 1 0.180 0.079 0.046 0.084 0.054 0.003 -0.015 -0.070 0.036
EV*T3 2 -0.204 -0.139 -0.114 -0.122 -0.109 -0.104 -0.101 -0.036 0.090
H*T2 1 0.144 0.142 0.099 0.122 0.118 0.124 0.123 0.106 0.468
H*T3 2 -0.162 -0.122 -0.092 -0.121 -0.111 -0.109 -0.112 -0.134 -0.270

EV*H*T2 1 0.261 0.243 0.153 0.215 0.195 0.148 0.121 -0.007 0.504
EV*H*T3 2 -0.476 -0.370 -0.319 -0.365 -0.335 -0.276 -0.243 -0.152 -0.396
σ2

Intercept 0.987 1.078 0.130 0.120 0.109 0.074 0.055 0.010 0.000
EV 1.128 1.010 0.129 0.154 0.140 0.125 0.118 0.064 0.000
H 0.613 0.618 0.071 0.061 0.063 0.071 0.075 0.088 0.000

T2 1 0.296 0.000 0.010 0.012 0.012 0.012 0.012 0.011 0.000
T3 2 0.452 0.000 0.005 0.019 0.016 0.011 0.011 0.013 0.000

EV*H 0.656 0.000 0.063 0.050 0.048 0.033 0.021 0.024 0.000
EV*T2 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EV*T3 2 1.032 0.000 0.101 0.103 0.091 0.061 0.046 0.000 0.000
H*T2 1 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.058 0.000
H*T3 2 0.439 0.000 0.000 0.008 0.003 0.000 0.000 0.000 0.000

η0 0.154 0.118 0.121 0.120 0.111 0.099 0.095 0.082 0.000

Table 6 shows the estimates of model parameters obtained using the lmer estimator, the
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SMDM- and CVFS-estimators, the MDPDE for different values of α. For increasing α, the
MDPDE’s capacity to accurately estimate the variance components drop, especially for α ≥ 0.4,
while the estimates of the fixed terms do not significantly change. It may be seen that the
SMDS-estimator has a poor performance. On the other hand, the MDPDEs for α = 0.05 and
α = 1/13 show similar estimates to those obtained using lmer and the CVFS-estimator.

Finally, we tested the lmer estimator, the CVFS-estimator and the MDPDE with α = 1/13 in
the case where some TE values are substituted by outlying values. In particular, we implemented
an iterative procedure where, in each step, an outlying observation is added. Let X be the
(40 × 12) matrix of the TE values. After selecting a random cell (i, j), with i ∈ {1, . . . , 40}
and j ∈ {1, . . . , 12}, Xij is replaced by a value sampled from N(kvj , 0.1

2), where k = 10, v is
the eigenvector corresponding to the smallest eigenvalue of the maximum likelihood estimate of
the covariance matrix and vj indicates the j-th component of the vector v. Before adding the
next outlying value, the estimates of lmer, the CVFS-estimator and MDPDE with α = 1/13
are computed. We repeated the procedure until 9 values had been substituted. Tables 8, 9
and 10 show the estimates and the corresponding p-values obtained using the usual lmer, the
CVFS-estimator and the proposed MDPDE, respectively, as the number of substituted cells (m)
increases.

Table 7: p-values obtained from the estimates of the lmer estimator, the CVFS-estimator and
the MDPDE with α = 1/13, for uncontaminated data (m = 0) and for the data set with m = 9
substituted cells.

Intercept EV H T2 1 T3 2 EV*H
lmer m = 0 0.000 0.000 0.685 0.200 0.126 0.000

m = 9 0.000 0.000 0.383 0.685 0.844 0.011
CVFS m = 0 0.000 0.000 0.987 0.777 0.565 0.000

m = 9 0.000 0.000 0.978 0.932 0.763 0.040
MDPDE 1/13 m = 0 0.000 0.000 0.977 0.716 0.534 0.000

m = 9 0.000 0.000 0.674 0.903 0.438 0.000
EV*T2 1 EV*T3 2 H*T2 1 H*T3 2 EV*H*T2 1 EV*H*T3 2

lmer m = 0 0.042 0.066 0.103 0.083 0.139 0.007
m = 9 0.881 0.816 0.734 0.789 0.858 0.486

CVFS m = 0 0.639 0.312 0.188 0.318 0.336 0.038
m = 9 0.827 0.831 0.686 0.694 0.724 0.669

MDPDE 1/13 m = 0 0.493 0.263 0.139 0.189 0.252 0.027
m = 9 0.724 0.347 0.075 0.217 0.193 0.009

The obtained results are summarized in Table 7, which reports the p-values of the tests,
checking whether the parameters are significantly different from zero giving an idea of the im-
portance of the corresponding variables, for uncontaminated data and when m = 9 cells are
substituted. The estimates obtained using lmer are more affected than those given by the
CVFS-estimator and the MDPDE. On the other hand, the MDPDE seems quite stable with re-
spect to the corresponding p-values, while those computed using lmer and the CVFS-estimator
show large variations.
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Table 8: Estimates and the corresponding p-values obtained using lmer for increasing m.
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9

β Intercept 7.001 6.994 6.987 6.963 6.940 6.917 6.896 6.890 6.882
EV 7.801 7.815 7.830 7.783 7.736 7.691 7.649 7.662 7.676
H -0.032 -0.017 -0.002 0.046 -0.001 0.045 0.087 0.099 0.085

T2 1 0.046 0.068 0.068 0.139 0.070 0.070 0.007 0.026 0.048
T3 2 -0.065 -0.065 -0.088 -0.088 -0.018 -0.086 -0.023 -0.023 -0.023

EV*H 0.460 0.431 0.401 0.497 0.404 0.495 0.579 0.553 0.583
EV*T2 1 0.211 0.168 0.168 0.311 0.172 0.172 0.046 0.008 -0.036
EV*T3 2 -0.235 -0.235 -0.190 -0.190 -0.051 -0.187 -0.061 -0.061 -0.061
H*T2 1 0.113 0.070 0.070 -0.074 -0.212 -0.212 -0.087 -0.125 -0.081
H*T3 2 -0.130 -0.130 -0.086 -0.086 0.053 0.189 0.063 0.063 0.063

EV*H*T2 1 0.323 0.410 0.410 0.123 -0.155 -0.155 0.097 0.173 0.085
EV*H*T3 2 -0.538 -0.538 -0.628 -0.628 -0.351 -0.079 -0.330 -0.330 -0.330

σ2 Intercept 0.952 0.909 0.911 0.590 0.450 0.495 0.473 0.466 0.456
EV 0.974 0.985 1.049 0.814 0.520 0.609 0.481 0.472 0.464
H 0.608 0.544 0.673 0.412 0.176 0.000 0.000 0.000 0.001

T2 1 0.009 0.407 0.518 0.557 0.216 0.136 0.003 0.001 0.000
T3 2 0.412 0.307 0.633 0.176 0.000 0.176 0.004 0.000 0.000

EV*H 0.603 0.990 1.153 0.961 0.225 0.690 0.617 0.644 0.618
EV*T2 1 0.037 0.136 0.476 1.272 0.625 0.132 0.000 0.020 0.013
EV*T3 2 0.893 1.152 1.354 0.386 0.044 0.911 0.707 0.698 0.674
H*T2 1 0.004 0.001 0.000 1.133 0.444 0.257 0.000 0.003 0.000
H*T3 2 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.001

η0 0.174 0.182 0.175 0.369 0.715 0.836 1.078 1.095 1.122
p-value Intercept 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
H 0.571 0.749 0.970 0.508 0.993 0.594 0.362 0.300 0.383

T2 1 0.324 0.224 0.249 0.113 0.481 0.504 0.952 0.824 0.685
T3 2 0.232 0.215 0.169 0.216 0.846 0.416 0.841 0.842 0.844

EV*H 0.000 0.000 0.001 0.001 0.014 0.015 0.010 0.016 0.011
EV*T2 1 0.025 0.086 0.096 0.095 0.408 0.405 0.842 0.971 0.881
EV*T3 2 0.038 0.062 0.149 0.184 0.787 0.445 0.814 0.815 0.816
H*T2 1 0.228 0.467 0.458 0.674 0.288 0.310 0.709 0.595 0.734
H*T3 2 0.164 0.174 0.362 0.530 0.778 0.356 0.785 0.787 0.789

EV*H*T2 1 0.085 0.034 0.030 0.652 0.683 0.706 0.834 0.712 0.858
EV*H*T3 2 0.004 0.006 0.001 0.022 0.355 0.848 0.477 0.481 0.486

23



Table 9: Estimates and the corresponding p-values obtained using the CVFS-estimator for in-
creasing m.

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9
β Intercept 7.041 7.048 7.048 7.048 7.078 7.078 7.073 7.073 7.064

EV 7.884 7.900 7.900 7.900 7.890 7.894 7.900 7.900 7.888
H -0.001 0.000 0.000 0.000 -0.005 -0.003 0.008 0.008 -0.006

T2 1 -0.016 -0.017 -0.017 -0.017 -0.014 -0.006 0.005 0.005 0.013
T3 2 -0.033 -0.042 -0.042 -0.042 -0.047 -0.056 -0.064 -0.064 -0.055

EV*H 0.495 0.504 0.504 0.504 0.495 0.512 0.527 0.527 0.534
EV*T2 1 0.046 0.033 0.033 0.033 0.051 0.070 0.066 0.066 0.068
EV*T3 2 -0.114 -0.139 -0.139 -0.139 -0.158 -0.176 -0.171 -0.171 -0.159
H*T2 1 0.099 0.078 0.078 0.078 0.104 0.128 0.129 0.129 0.132
H*T3 2 -0.091 -0.077 -0.077 -0.077 -0.108 -0.126 -0.117 -0.117 -0.104

EV*H*T2 1 0.153 0.096 0.096 0.096 0.139 0.170 0.174 0.174 0.223
EV*H*T3 2 -0.319 -0.277 -0.277 -0.277 -0.312 -0.352 -0.338 -0.338 -0.360

σ2 Intercept 0.130 0.138 0.138 0.138 0.111 0.120 0.129 0.129 0.138
EV 0.129 0.128 0.128 0.128 0.133 0.142 0.151 0.151 0.178
H 0.071 0.078 0.078 0.078 0.083 0.092 0.096 0.096 0.088

T2 1 0.010 0.010 0.010 0.010 0.014 0.016 0.016 0.016 0.016
T3 2 0.005 0.005 0.005 0.005 0.009 0.012 0.017 0.017 0.028

EV*H 0.063 0.071 0.071 0.071 0.082 0.085 0.087 0.087 0.090
EV*T2 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EV*T3 2 0.101 0.070 0.070 0.070 0.080 0.089 0.104 0.104 0.134
H*T2 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
H*T3 2 0.000 0.000 0.000 0.000 0.006 0.021 0.022 0.022 0.018

η0 0.121 0.125 0.125 0.125 0.126 0.129 0.138 0.138 0.146
p-value Intercept.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.622 0.000
H 0.989 0.998 1.000 0.999 0.971 0.976 0.948 0.984 0.978

T2 1 0.784 0.842 0.849 0.835 0.920 0.971 0.975 0.973 0.932
T3 2 0.600 0.771 0.681 0.745 0.752 0.764 0.726 0.841 0.763

EV*H 0.000 0.000 0.001 0.001 0.010 0.018 0.018 0.128 0.040
EV*T2 1 0.672 0.802 0.847 0.878 0.903 0.820 0.825 0.931 0.827
EV*T3 2 0.348 0.496 0.363 0.435 0.758 0.708 0.612 0.907 0.831
H*T2 1 0.178 0.798 0.669 0.692 0.694 0.646 0.679 0.909 0.686
H*T3 2 0.263 0.791 0.898 0.725 0.639 0.581 0.653 0.906 0.694

EV*H*T2 1 0.359 0.894 0.821 0.820 0.782 0.766 0.775 0.812 0.724
EV*H*T3 2 0.069 0.712 0.472 0.527 0.492 0.497 0.677 0.929 0.669
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Table 10: Estimates and the corresponding p-values obtained using the proposed MDPDE with
α = 1/13 for increasing m.

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9
β Intercept 7.062 7.062 7.055 7.040 7.059 7.060 7.082 7.078 7.070

EV 7.836 7.836 7.835 7.843 7.837 7.838 7.828 7.841 7.856
H 0.002 0.003 -0.003 0.012 0.006 0.007 0.004 0.018 0.026

T2 1 -0.021 -0.022 -0.026 -0.013 -0.017 -0.017 -0.018 -0.010 0.007
T3 2 -0.030 -0.028 -0.019 -0.023 -0.027 -0.028 -0.029 -0.033 -0.042

EV*H 0.448 0.450 0.450 0.454 0.421 0.420 0.410 0.430 0.447
EV*T2 1 0.051 0.048 0.033 0.032 0.026 0.025 0.034 0.048 0.030
EV*T3 2 -0.108 -0.104 -0.091 -0.088 -0.096 -0.095 -0.107 -0.109 -0.106
H*T2 1 0.116 0.115 0.113 0.122 0.120 0.120 0.140 0.148 0.158
H*T3 2 -0.105 -0.105 -0.085 -0.097 -0.081 -0.081 -0.101 -0.117 -0.103

EV*H*T2 1 0.194 0.193 0.167 0.210 0.210 0.208 0.238 0.260 0.245
EV*H*T3 2 -0.329 -0.326 -0.326 -0.367 -0.347 -0.345 -0.371 -0.418 -0.401

σ2 Intercept 0.107 0.107 0.106 0.104 0.095 0.095 0.074 0.077 0.081
EV 0.137 0.137 0.142 0.146 0.151 0.150 0.150 0.151 0.154
H 0.064 0.064 0.065 0.061 0.063 0.062 0.064 0.061 0.063

T2 1 0.011 0.011 0.014 0.012 0.012 0.013 0.015 0.016 0.017
T3 2 0.016 0.015 0.016 0.018 0.018 0.018 0.021 0.022 0.023

EV*H 0.051 0.049 0.060 0.066 0.034 0.035 0.038 0.034 0.036
EV*T2 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EV*T3 2 0.094 0.089 0.102 0.112 0.113 0.114 0.121 0.131 0.138
H*T2 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
H*T3 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

η0 0.109 0.109 0.104 0.105 0.107 0.106 0.103 0.106 0.113
p-value Intercept 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
H 0.968 0.961 0.952 0.840 0.912 0.907 0.951 0.756 0.674

T2 1 0.685 0.662 0.610 0.799 0.748 0.745 0.746 0.862 0.903
T3 2 0.543 0.566 0.689 0.635 0.590 0.587 0.578 0.534 0.438

EV*H 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EV*T2 1 0.514 0.536 0.670 0.686 0.746 0.758 0.674 0.563 0.724
EV*T3 2 0.268 0.284 0.353 0.384 0.354 0.358 0.306 0.313 0.347
H*T2 1 0.148 0.151 0.166 0.142 0.163 0.163 0.095 0.083 0.075
H*T3 2 0.210 0.211 0.299 0.243 0.334 0.337 0.213 0.153 0.217

EV*H*T2 1 0.256 0.259 0.328 0.218 0.232 0.236 0.172 0.150 0.193
EV*H*T3 2 0.029 0.030 0.034 0.016 0.025 0.025 0.017 0.005 0.009
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